THE ART & SCIENCE OF EXPERT THINKING

A key to superior clinical reasoning and medical decision-making

Objectives

- Describe cognitive processes of expert thinking in clinical reasoning and decisionmaking
- Apply teaching methods that will assist learners in utilizing expert thinking in clinical settings
- Develop individual approaches to incorporate the concept of expert thinking into various settings

Quirk, M 2006 Croskerry 2003

Cognitive Exercise:

An 18-month old with fever and swollen eyes

What is the Diagnosis?

6 month old with seizures

System 1

"Trust sense of familiarity"

System 1: Intuition

- <u>Experience</u> is translated into action without intervention of any reasoning process.
- <u>Experts</u> address, integrate and make sense of multiple complex pieces of data subconsciously.
- "Pattern recognition" & "Illness script"

"Thinking without thinking"

Early initial hypothesis

- Correct Dx hypothesis considered once during the encounter predicts Dx accuracy, OR 15, 95% CI (1, 219)
- Correct Dx hypothesis within the first 10 questions predicts Dx accuracy, OR 24, 95%CI (2.6, 222)
- Correct Dx considered within 5 min, 95% chance of reaching a correct Dx

Can you memorize this?

DRAHSISNRETTAPGNIYFITNEDI

IDENTIFYING PATTERNS IS HARD

Learning in 'chunks' help organize the knowledge

What Makes The Expert?

"...no amount of rules or facts can capture the knowledge an expert has when he has stored his <u>experience</u> of the actual outcomes of tens of thousands of cases."

Dreyfus & Dreyfus, 1986 Mylopoulos et al. Academic Medicine 2012

Organized Knowledge = Expertise

Illness script: semantic qualifiers

"The Key to Expert Pattern Recognition"

Sort Out Illness Scripts

Create & Compile Illness Scripts = Organize knowledge

Patient Story

 A 72-year old white man presents with knee pain that woke him up from sleep; "the worst pain I've ever had." The knee was normal before he went to bed; now it's also swollen. He had similar problems 9 months and 2 years ago.

Problem representation

"Here's an <u>older</u> man with an <u>acute</u>, <u>recurrent</u> attack of <u>severe</u> pain in a <u>single</u>, <u>large</u> joint, a <u>mono</u>-arthritis. This could be gout or septic arthritis."

Semantic qualifiers

- 1- Pt char. Mr. S., 72 Older man
- 2- Site *R. knee* Mono, Large
- 3- Course Last year Episodic
- 4- Severity *Blankets* **Severe**
- 5- Context Night At rest
- 6- Onset Last night Acute

Access to 'illness script'

Older man Acute onset Recurrent Mono, large joint

Gout, Septic arthritis

Woman Gradual onset Chronic Poly, small joint

Rheumatoid arthritis

PAIRED EXERCISE

Epidemiology

Syndrome

EXAMPLE-'illness script'

Older man Acute onset Recurrent Mono, large joint

Gout, Septic arthritis

Woman Gradual onset Chronic Poly, small joint

Rheumatoid arthritis

Compare & Contrast Scripts

Acute onset Fever, Leukocytosis Marked tenderness Rapid progression Toxic appearing Unilateral > bilateral Smooth, indistinct border Risks for infection

Subacute or Chronic Afebrile Dull tenderness Gradual progression Non-toxic Symmetric, diffusely scattered pattern Cutaneous changes Risks for venous stasis

System 1: Irrational & Unexplainable

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

Sydney Harris

Novice & Pattern Recognition

System 2

"Think it through, then decide"

Systematic Analysis

Organized and Logical

- Start with
 - Acute vs. Chronic
 - Anatomy or Structure
 - Pathophysiology or Mechanism of Illness
 - Organ System
- Then
 - Etiology

DDx via Etiology

- V Vascular
- I Infection and inflammatory (autoimmune)
- **N** Neoplastic (paraneoplastic)
- D Drugs
- I latrogenic and idiopathic
- C Congenital (developmental, genetic)
- A Anatomic
- T Trauma
- E Environmental and endocrine (metabolic)

Diagnostic Checklist

ge* adolescent (13-16yrs) ▼	show 10 show all d	on't miss
ender ^C female [©] male		0 0
fine search:	Lyme Disease	A A TINFEC
North America 🔽 🕕	Rubella Infection	INFEC
tory:	🖃 Inflammatory Bowel Disease	🔥 🍙 🕐 GASTRO
ow me:	Crohn's Disease	山白
nagnoses	Sarcoidosis	A PRESP
interregist agents	Neutrophilic Dermatoses	🔊 🖄 🕐 RHEUM
bioterrorist agents	Erythema Nodosum	BB
ter clinical features, <u>no</u> negatives,	Pyoderma Gangrenosum	BB
numbers: 🔍	CNS TB & TB Meningitis	🔊 🏠 🕐 INFEC
ersistent joint pain 🛛 😵	Staphylococcus aureus Infection	🗟 🙊 🍞 INFEC
er 📀	Brucellosis	▲ ♠ ⑦INFEC
	Sickle Cell Disease / Crisis 🏹	🔥 🏠 🍞 HEMAT
	Lemierre's Syndrome 🔻	₿ இ ?INFEC
	Wegener's Granulomatosis	RHEUM
add a clinical feature	Osteomyelitis and Septic Arthritis	INFEC
get checklist >	Hodgkin Disease	IS INEOPL
alars an end	Influenza	INFEC
<u>clear searcn</u>	Group A Streptococcus	INFEC
l is not meant to replace your al judgment.	Non-Hodgkin Lymphoma	NEOPL
	Click diagnosis for evidence-based content.	
	feedback:	submit

The extent of diagnostic thinking is as good as you frame it

A post-op teenager

- 15-yo, Hispanic male
 Admitted post op from pectus excavatum corrective surgery
- abdominal pain, fatigue

COGNITIVE AUTOPSY

What caused the misdiagnosis?

What went wrong with the Illness script(s)?

Cognitive Biases

- Predictable patterns of deviation in judgment that occur in particular situations and lead to cognitive errors:
 - perceptual distortion
 - illogical interpretation, or irrationality
 - inaccurate judgment
- Universal and may be preventable using the cognitive de-biasing process

Common Cognitive Biases

Availability

biased by ease of recall

Framing

biased by details surrounding the clinical data

Blind Obedience

biased by authority or technology

Anchoring

stuck on initial impression

Premature Closure

prematurely halting diagnostic workup

Cognition vs. Metacognition

Adapted from Nelson 1990, Psych of Learning and Motivation

Cognitive Approach

- Making a <u>plan before</u> thinking episode
- Regulating thought <u>during</u> episode
- <u>Reflecting afterwards</u> to revise the decision, and plan future practices

Cognitive Debiasing

COGNITIVE PAUSE!

- Did I put enough effort toward this problem?
- Did I omit anything serious/life threatening?
- Am I about to repeat my past mistakes?
- Does it make clinical/logical sense?
- Let's think outside the box!

Red Flag Prompt

- Objective: To determine if a "pause" and focus on isolating "red flags" strategy during diagnostic reasoning improves diagnostic performance.
- Red Flag definition:
 - a constellation of symptoms, signs, clinical data or circumstances that should lead to heightened suspicion for a serious condition and trigger additional evaluation.
- Methods:71 Pediatric resident physicians from 2 university based childrens hospitals.
 - Randomized controlled, scenario-based study which featured a 2 (Red flags: Yes/No) x 2 (Case Complexity: Complex/Simple) betweensubjects measures design.
- Results/Conclusion:
 - Overall, the results show that alerting the participants to watch out for red flags significantly improves diagnostic accuracy, in general, and for complex cases in particular.

Impact of Red Flags and Case Complexity on Diagnostic Performance among Pediatric Residents: A Randomized Controlled Vignette Study. Chartan, C¹. Thammasitboon, S¹. Sur, M¹. Krishnamurthy, P¹. Singh, H².

GROUP EXERCISE Slowing Down and Debiasing

GROUP WORK

- Discuss...
 - Identify opportunities in the case where the providers could have slowed down to avoid errors
 - Determine if cognitive biases led to the errors

GROUP EXERCISE Case Reframing

GROUP WORK

- Consider the case from the perspective or "frame" of:
 - Resident
 - Nurse
 - Mother
- How could understanding the "frame" of each individual impact diagnostic process?
- How could this have changed their response to the situation?

Innovations:

- Reflective Practice
- MedU
- Deliberate Practice Module

System 1 vs. System 2

2-Step Expert Thinking

The Intellectually Disciplined Process

Evaluate information matching patterns with illness scripts

Evaluate one's own thought to reduce biases

Take Home Points

- System 1 thinking—fast, often accurate, prone to biases
 - Problem Representation with Semantic Qualifiers AND Illness Scripts are a good way to develop
 System 1 thinking
- System 2 thinking—deliberate, often accurate, prone to framing effects
 - Cognitive debiasing and Cognitive autopsy with reframing can help improve System 2 thinking
- It is important to know when to use
 System 1 vs. System 2